Saturday, December 25, 2010

Bunga Rampai Laman Distribusi Kekayaan (Ekonofisika)

Japanese groups

Small-World Effects in Wealth Distribution
cond-mat/0108482 Wataru Souma , Yoshi Fujiwara , Hideaki Aoyama
Small-World Effects in Wealth Distribution
Hideaki Aoyama, Yuichi Nagahara, Mitsuhiro P. Okazaki, Wataru Souma, Hideki Takayasu, Misako Takayasu [cond-mat/0006038]
Small-World Effects in Wealth Distribution
Hideaki Aoyama, Yuichi Nagahara, Mitsuhiro P. Okazaki, Wataru Souma, Hideki Takayasu, Misako Takayasu [cond-mat/0006038]
Small-World Effects in Wealth Distribution
HIDEAKI AOYAMA and WATARU SOUMA YUICHI NAGAHARA MITSUHIRO P. OKAZAKI HIDEKI TAKAYASU MISAKO TAKAYASU Fractals, Vol. 8, No. 3 (2000) 293-300 doi:10.1142/S0218348X0000038X
Small-World Effects in Wealth Distribution
Wataru Souma [cond-mat/0011373]
Small-World Effects in Wealth Distribution
WATARU SOUMA Fractals 9 No. 4 (2001) 463-470
Small-World Effects in Wealth Distribution
Kenji Kawamura, Naomichi Hatano [cond-mat/0303331]
Small-World Effects in Wealth Distribution
Masahiro Anazawa, Atushi Ishikawa, Tadao Suzuki, Masashi Tomoyose [cond-mat/0307116]
Small-World Effects in Wealth Distribution
Takayuki Mizuno, Misako Takayasu, Hideki Takayasu cond-mat/0307270
Small-World Effects in Wealth Distribution
Takayuki Mizuno, Makoto Katori, Hideki Takayasu, Misako Takayasu [cond-mat/0308365]
Small-World Effects in Wealth Distribution
Yoshi Fujiwara, Corrado Di Guilmi, Hideaki Aoyama, Mauro Gallegati, Wataru Souma [cond-mat/0310061]
Small-World Effects in Wealth Distribution
Yoshi Fujiwara, Corrado Di Guilmi, Hideaki Aoyama, Mauro Gallegati and Wataru Souma Physica A Volume 335, Issues 1-2 , 1 April 2004, Pages 197-216 doi:10.1016/j.physa.2003.12.015
Small-World Effects in Wealth Distribution
Yoshikazu Ohtaki, Hiroshi H. Hasegawa [cond-mat/0312568]
Small-World Effects in Wealth Distribution
Atushi Ishikawa [cond-mat/0409145]
Small-World Effects in Wealth Distribution
Atushi Ishikawa, Tadao Suzuki, Masashi Tomoyose cond-mat/0203399
Small-World Effects in Wealth Distribution
Yoshi Fujiwara, Wataru Souma, Hideaki Aoyama, Taisei Kaizoji, Masanao Aoki cond-mat/0208398
Small-World Effects in Wealth Distribution
Yoshi Fujiwara, , a, Wataru Soumab, Hideaki Aoyamac, Taisei Kaizojid and Masanao Aokie Physica A: Statistical Mechanics and its Applications Volume 321, Issues 3-4 , 15 April 2003, Pages 598-604 doi:10.1016/S0378-4371(02)01663-1
Small-World Effects in Wealth Distribution
Wataru Souma cond-mat/0202388
Small-World Effects in Wealth Distribution
Hideaki Aoyama, , a, Wataru Soumab and Yoshi Fujiwarac Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 352-358 Proceedings of the International Econophysics Conference doi:10.1016/S0378-4371(02)01855-1
Small-World Effects in Wealth Distribution
Akihiro Fujihara, Toshiya Ohtsuki, and Hiroshi Yamamoto Phys. Rev. E 70, 031106 (2004)
Small-World Effects in Wealth Distribution
K. Okuyama, M. Takayasu, and H. Takayasu Physica A: Volume 269, Issue 1 , 1 July 1999, Pages 125-131 doi:10.1016/S0378-4371(99)00086-2
Small-World Effects in Wealth Distribution
Wataru Souma, Yoshi Fujiwara, Hideaki Aoyama cond-mat/0108482
Empirical study and model of personal income
physics/0505173 Wataru Souma , Makoto Nirei
Pareto index induced from the scale of companies
physics/0506066 Atushi Ishikawa
Derivation of the distribution from extended Gibrat's law
physics/0508178 Atushi Ishikawa
Annual change of Pareto index dynamically deduced from the law of detailed quasi-balance
physics/0511220 Atushi Ishikawa
Re-examination of the size distribution of firms
[physics/0606068] Bose-Einstein condensation in a simple model of economy and emergence of Pareto-tails in wealth distributions
[physics/0607131] Dynamical change of Pareto index in Japanese land prices
[physics/0607217] The uniqueness of the profits distribution function in the middle scale region



Maxwell model & granular gas

historical

JC Maxwell: On the dynamical theory of gases
JC Maxwell On the dynamical theory of gases Philosophical Transactions of the Royal Society of London: Vol. 157 (1867), p. 49-88 Stable URL: http://links.jstor.org/sici?sici=0261-0523%281867%29157%3C49%3AOTDTOG%3E2.0.CO%3B2-H


BenNaim,Krapivsky,Lindenberg,et al.

The Inelastic Maxwell Model
E. Ben-Naim, P.L. Krapivsky [cond-mat/0301238]
Self-Similarity in Random Collision Processes
Daniel ben-Avraham, Eli Ben-Naim, Katja Lindenberg, Alexandre Rosas [cond-mat/0308175]
Self-similarity in random collision processes
Daniel ben-Avraham,1 Eli Ben-Naim,2 Katja Lindenberg,3 and Alexandre Rosas3 Phys. Rev. E 68, 050103(R) (2003) doi:10.1103/PhysRevE.68.050103
Velocity Distribution in a Viscous Granular Gas
Alexandre Rosas, Daniel ben-Avraham, Katja Lindenberg [cond-mat/0404405]
Impurity in a Granular Fluid
E. Ben-Naim, P.L. Krapivsky cond-mat/0203099
Multiscaling in inelastic collisions
E. Ben-Naim1 and P. L. Krapivsky2 Physical Review E -- January 2000 -- Volume 61, Issue 1, pp. R5-R8
Nontrivial Velocity Distributions in Inelastic Gases
cond-mat/0111044 P. L. Krapivsky, E. Ben-Naim
Nontrivial velocity distributions in inelastic gases
P L Krapivsky and E Ben-Naim 2002 J. Phys. A: Math. Gen. 35 L147-L152 doi:10.1088/0305-4470/35/11/103 URL: http://stacks.iop.org/0305-4470/35/L147
Particle systems with stochastic passing
I. Ispolatov1 and P. L. Krapivsky2 Physical Review E -- March 2000 -- Volume 61, Issue 3, pp. R2163-R2167 http://link.aps.org/abstract/PRE/v61/pR2163
Scaling, Multiscaling, and Nontrivial Exponents in Inelastic Collision Processes
E. Ben-Naim, P.L. Krapivsky cond-mat/0202332
Scaling, multiscaling, and nontrivial exponents in inelastic collision processes
E. Ben-Naim1 and P. L. Krapivsky2 Phys. Rev. E 66, 011309 (2002) doi:10.1103/PhysRevE.66.011309
Stationary states and energy cascades in inelastic gases

10.1103/PhysRevLett.94.138001











Ernst&Brito

Scaling Solutions of Inelastic Boltzmann Equations with Over-populated High Energy Tails
M. H. Ernst, R. Brito [cond-mat/0112417]
Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems
M.H. Ernst , R. Brito [cond-mat/0304608]
Anomalous velocity distributions in inelastic Maxwell gases
R. Brito, M. H. Ernst [cond-mat/0310406]
Driven inelastic Maxwell models with high energy tails
M. H. Ernst R. Brito Phys. Rev. E 65, 040301(R) (2002) doi:10.1103/PhysRevE.65.040301
High-energy tails for inelastic Maxwell models
M. H. Ernst1 and R. Brito2 Europhys. Lett., 58 (2) , pp. 182-187 (2002) DOI: 10.1209/epl/i2002-00622-0
High-energy tails for inelastic Maxwell models
M. H. Ernst1 and R. Brito2 Europhys. Lett., 58 (2) , pp. 182-187 (2002) DOI: 10.1209/epl/i2002-00622-0
Velocity Tails for Inelastic Maxwell Models
Matthieu H. Ernst, Ricardo Brito cond-mat/0111093







Marconi et al.

Cooling of a lattice granular fluid as an ordering process
A. Baldassarri,1,2 U. Marini Bettolo Marconi,1 and A. Puglisi2 Phys. Rev. E 65, 051301 (2002) doi:10.1103/PhysRevE.65.051301
Driven granular gases with gravity
A. Baldassarri,1 U. Marini Bettolo Marconi,1 A. Puglisi,2 and A. Vulpiani2 Phys. Rev. E 64, 011301 (2001) doi:10.1103/PhysRevE.64.011301
Influence of correlations on the velocity statistics of scalar granular gases
A. Baldassarri1, U. Marini Bettolo Marconi1 and A. Puglisi2 Europhys. Lett., 58 (1) , pp. 14-20 (2002) DOI: 10.1209/epl/i2002-00600-6
Mean-field model of free-cooling inelastic mixtures
Umberto Marini Bettolo Marconi1,2 and Andrea Puglisi3 Phys. Rev. E 65, 051305 (2002) doi:10.1103/PhysRevE.65.051305
Steady-state properties of a mean-field model of driven inelastic mixtures
Daniela Paolotti,1 Alain Barrat,2 Umberto Marini Bettolo Marconi,1 and Andrea Puglisi Phys. Rev. E 69, 061304 (2004) doi:10.1103/PhysRevE.69.061304







Other

Stable Equilibrium Based on Levy Statistics: Stochastic Collision Models Approach
Eli Barkai [cond-mat/0310509]
Stable equilibrium based on Levy statistics: Stochastic collision models approach
Eli Barkai Phys. Rev. E 68, 055104(R) (2003) doi:10.1103/PhysRevE.68.055104
Exponential velocity tails in a driven inelastic Maxwell model
Tibor Antal, Michel Droz, Adam Lipowski cond-mat/0207102
Exponential velocity tails in a driven inelastic Maxwell model
T. Antal,1,2 Michel Droz,1 and Adam Lipowski Phys. Rev. E 66, 062301 (2002) doi:10.1103/PhysRevE.66.062301
Violation of Molecular Chaos in dissipative gases
Thorsten Poeschel, Nikolai V. Brilliantov, Thomas Schwager cond-mat/0210058
Granular Gases - the early stage
Nikolai V. Brilliantov, Thorsten Poeschel cond-mat/0203401

On high energy tails in inelastic gases





cond-mat/0510108
R. Lambiotte , L. Brenig , J.M. Salazar

Power-law velocity distributions in granular gases





[math-ph/0608035] On the self-similar asymptotics for generalized non-linear kinetic Maxwell models












multiplicative processes

Effects of Randomness on Power Law Tails in Multiplicatively Interacting Stochastic Processes
Toshiya Ohtsuki, Akihiro Fujihara, Hiroshi Yamamoto [cond-mat/0312357]
Effects of randomness on power law tails in multiplicatively interacting stochastic processes
Toshiya Ohtsuki , , Akihiro Fujihara and Hiroshi Yamamoto Physics Letters A Volume 324, Issues 5-6 , 26 April 2004, Pages 378-382 doi:10.1016/j.physleta.2004.03.013







India groups

Pareto Law in a Kinetic Model of Market with Random Saving Propensity
Arnab Chatterjee, Bikas K. Chakrabarti, S. S. Manna [cond-mat/0301289]
Ideal Gas-Like Distributions in Economics: Effects of Saving Propensity
Bikas K. Chakrabarti, Arnab Chatterjee [cond-mat/0302147]
Stochastic Maps, Wealth Distribution in Random Asset Exchange Models and the Marginal Utility of Relative Wealth
Sitabhra Sinha [cond-mat/0304324]
Analytic treatment of a trading market model
Arnab Das, Sudhakar Yarlagadda [cond-mat/0304685]
A distribution function analysis of wealth distribution
Arnab Das, Sudhakar Yarlagadda [cond-mat/0310343]
Money in Gas-Like Markets: Gibbs and Pareto Laws
Arnab Chatterjee, Bikas K. Chakrabarti, S. S. Manna [cond-mat/0311227]
Gibbs versus non-Gibbs distributions in money dynamics
Marco Patriarca, Anirban Chakraborti, Kimmo Kaski [cond-mat/0312167]
A statistical model with a standard Gamma distribution
Marco Patriarca, Anirban Chakraborti, Kimmo Kaski [cond-mat/0402200]
Statistical model with a standard Gamma distribution
Marco Patriarca,1 Anirban Chakraborti,2 and Kimmo Kaski Phys. Rev. E 70, 016104 (2004) doi:10.1103/PhysRevE.70.016104
Distributions of money in model markets of economy
Anirban Chakraborti cond-mat/0205221 Int. J. Mod. Phys. C 13, 1315 (2002)
An analytic treatment of the Gibbs-Pareto behavior in wealth distribution
Arnab Das, Sudhakar Yarlagadda [cond-mat/0409329]
Master equation for a kinetic model of trading market and its analytic solution
cond-mat/0501413 Arnab Chatterjee , Bikas K. Chakrabarti , Robin B. Stinchcombe Journal-ref: Phys. Rev. E 72 (2005) 026126
Evidence for Power-law tail of the Wealth Distribution in India
cond-mat/0502166 Sitabhra Sinha Journal-ref: Physica A, Vol 359, pp 555-562 (2006)
Analyzing money distributions in `ideal gas' models of markets
physics/0505047 Arnab Chatterjee , Bikas K. Chakrabarti , Robin B. Stinchcombe
The Rich Are Different!: Pareto Law from asymmetric interactions in asset exchange models
physics/0504197 Sitabhra Sinha
Blockbusters, Bombs and Sleepers: The income distribution of movies
physics/0504198 Sitabhra Sinha , Raj Kumar Pan
A stochastic model of wealth distribution
physics/0504137 Indrani Bose , Subhasis Banerjee
Ideal-Gas Like Markets: Effect of Savings
physics/0507136 Arnab Chatterjee , Bikas K Chakrabarti
A common origin of the power law distributions in models of market and earthquake
physics/0510038 Pratip Bhattacharyya , Arnab Chatterjee , Bikas K Chakrabarti
Models of wealth distributions: a perspective
physics/0604161 Abhijit Kar Gupta
A Variational Principle for Pareto's power law
[physics/0607258] Ideal-gas like market models with savings: quenched and annealed cases
[physics/0608174] Many-agent models in economic and social sciences
[physics/0609069] Kinetic market models with single commodity having price fluctuations
[physics/0703201] Economic Inequality: Is it Natural?







wealth exchange

Dynamical optimization theory of a diversified portfolio
Matteo Marsili, Sergei Maslov and Yi-Cheng Zhang Physica A: Statistical and Theoretical Physics Volume 253, Issues 1-4 , 1 May 1998, Pages 403-418 doi:10.1016/S0378-4371(98)00075-2
Wealth condensation in a simple model of economy
Jean-Philippe Bouchaud, and Marc Mezard, Physica A, Volume 282, Issues 3-4 , 15 July 2000, Pages 536-545 doi:10.1016/S0378-4371(00)00205-3
Wealth condensation in a simple model of economy
cond-mat/0002374
Wealth condensation in pareto macroeconomies
Z. Burda,1,2 D. Johnston,3 J. Jurkiewicz,1 M. Kamiski,4 M. A. Nowak,1 G. Papp,5 and I. Zahed6 Phys. Rev. E 65, 026102 (2002) doi:10.1103/PhysRevE.65.026102
Comment on ``Wealth condensation in Pareto macroeconomies''
Ding-wei Huang Phys. Rev. E 68, 048101 (2003) URL: http://link.aps.org/abstract/PRE/v68/e048101 doi:10.1103/PhysRevE.68.048101
Wealth distributions in asset exchange models
S. Ispolatov - P.L. Krapivsky - S. Redner Eur. Phys. J. B 2, 267-276
Is Econophysics a Solid Science?
Z. Burda, J. Jurkiewicz, M.A. Nowak [cond-mat/0301096]
Wealth Condensation in Pareto Macro-Economies







Dragulescu-Yakovenko

Research in Econophysics
Victor M. Yakovenko [cond-mat/0302270]
Applications of physics to economics and finance: Money, income, wealth, and the stock market
Adrian A. Dragulescu [cond-mat/0307341]
"Thermal" and "superthermal" two-class distribution of personal income
A. Christian Silva, Victor M. Yakovenko [cond-mat/0406385]
Statistical Mechanics of Money, Income, and Wealth: A Short Survey
Adrian A. Dragulescu, Victor M. Yakovenko cond-mat/0211175
Evidence for the exponential distribution of income in the USA
Adrian Dragulescu, Victor M. Yakovenko cond-mat/0008305
Statistical mechanics of money
A. Dragulescu A1 and V.M. Yakovenko The European Physical Journal B 17, October 2000 Pages: 723 - 729 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=17&issue=4&spage=723
Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States
Adrian Dragulescu and Victor M. Yakovenko Physica A: Statistical Mechanics and its Applications Volume 299, Issues 1-2 , 1 October 2001, Pages 213-221 doi:10.1016/S0378-4371(01)00298-9
Statistical mechanics of money
cond-mat/0001432 Adrian Dragulescu , Victor M. Yakovenko Journal-ref: Eur. Phys. J. B 17, 723 (2000)
A study of the personal income distribution in Australia







Iglesias et al.

Wealth redistribution with finite resources
nlin/0109015 S. Pianegonda , J. R. Iglesias , G. Abramson , J. L. Vega Journal-ref: Physica A, 322, 667-675 (2003)
Wealth redistribution with finite resources
S. Pianegonda, J.R. Iglesias [cond-mat/0311113]
Wealth redistribution with finite resources
J.R. Iglesias, S. Goncalves, G. Abramson, J.L. Vega [cond-mat/0311127]
Wealth redistribution with finite resources
J. R. Iglesias, , a, b, S. Gonçalvesb, S. Pianegondab, J. L. Vegac and G. Abramsond Physica A: Statistical Mechanics and its Applications Volume 327, Issues 1-2 , 1 September 2003, Pages 12-17 Proceedings of the XIIIth Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics doi:10.1016/S0378-4371(03)00430-8
Wealth redistribution with finite resources
S. Pianegonda, , a, J. R. Iglesias, a, G. Abramson, b and J. L. Vega Physica A: Statistical Mechanics and its Applications Volume 322 , 1 May 2003, Pages 667-675 doi:10.1016/S0378-4371(02)01737-5
Economic exchanges in a stratified society: End of the middle class?







Scafetta et al.

A Trade-Investment Model for Distribution of Wealth
Nicola Scafetta, Bruce J. West, Sergio Picozzi [cond-mat/0306579]
An out-of-equilibrium model of the distributions of wealth
Nicola Scafetta, Sergio Picozzi, Bruce J. West [cond-mat/0403045]
Pareto's law: a model of human sharing and creativity
Nicola Scafetta, Sergio Picozzi, Bruce J. West cond-mat/0209373







non-extensive statmech

Nonextensive statistical mechanics and economics
Constantino Tsallis, Celia Anteneodo, Lisa Borland, Roberto Osorio [cond-mat/0301307]
Nonextensive statistical mechanics and economics
Constantino Tsallis, Celia Anteneodo, Lisa Borland and Roberto Osorio Physica A: Statistical Mechanics and its Applications, Volume 324, Issues 1-2, 1 June 2003, Pages 89-100 doi:10.1016/S0378-4371(03)00042-6
Dynamical Foundations of Nonextensive Statistical Mechanics
Christian Beck Phys. Rev. Lett. 87, 180601 (2001) doi:10.1103/PhysRevLett.87.180601
Nonextensive statistical mechanics: A brief review of its present status
Constantino Tsallis cond-mat/0205571







other

Exchanges in complex networks: income and wealth distributions
T. Di Matteo, T. Aste, S. T. Hyde [cond-mat/0310544]
Physics of Econophysics
Yougui Wang, Jinshan Wu, Zengru Di [cond-mat/0401025]
Cooperation Comes With Exploitation -- A Study Of The Wealth Inequality In The Minority Game
K. H. Ho, F. K. Chow, H. F. Chau [cond-mat/0402411]
Wealth Dynamics on Complex Networks
D. Garlaschelli, M. I. Loffredo [cond-mat/0402466]
Power Law Distributions in Korean Household Incomes
Kyungsik Kim, Seong-Min Yoon [cond-mat/0403161]
Physical Picture of the Insurance Market
Amir Hossein Darooneh [cond-mat/0404680]
Power Law Distribution of Wealth in a Money-Based Model
Yan-Bo Xie, Bo Hu, Tao Zhou, Bing-Hong Wang [cond-mat/0405288]
Evidence for the Independence of Waged and Unwaged Income, Evidence for Boltzmann Distributions in Waged Income, and the Outlines of a Coherent Theory of Income Distribution
G. Willis, J. Mimkes [cond-mat/0406694]
Dynamics of Money and Income Distributions
Przemyslaw Repetowicz Stefan Hutzler Peter Richmond [cond-mat/0407770]
Power Law Tails in the Italian Personal Income Distribution
F. Clementi, M. Gallegati [cond-mat/0408067]
Laser Welfare: First Steps in Econodynamic Engineering
G. Willis [cond-mat/0408227]
Empirical nonextensive laws for the geographical distribution of wealth
Ernesto P. Borges cond-mat/0205520
Lagrange statistics in systems (markets) with price constraints: Analysis of property, car sales, marriage and job markets by the Boltzmann function and the Pareto distribution
J. Mimkes (1), Th. Fruend (1), G. Willis cond-mat/0204234
PINC-01--Part 1
Demographic survey
A kinetic approach to some quasi-linear laws of macroeconomics
M. Gligor1and M. Ignat Eur. Phys. J. B 30, 125-135 (2002) DOI: 10.1140/epjb/e2002-00366-7
Wealth distribution in an ancient Egyptian society
A. Y. Abul-Magd Phys. Rev. E 66, 057104 (2002) URL: http://link.aps.org/abstract/PRE/v66/e057104 doi:10.1103/PhysRevE.66.057104
Wealth dynamics on complex networks
Diego Garlaschelli, and Maria I. Loffredo, Physica A: Statistical Mechanics and its Applications Volume 338, Issues 1-2 , 1 July 2004, Pages 113-118 doi:10.1016/j.physa.2004.02.032
Wealth accumulation with random redistribution
Ding-wei Huang Phys. Rev. E 69, 057103 (2004) doi:10.1103/PhysRevE.69.057103
Power Law Tails in the Italian Personal Income Distribution
F. Clementi, M. Gallegati [cond-mat/0408067]
Wealth distribution in an ancient Egyptian society
A.Y. Abul-Magd cond-mat/0410414 [Phys. Rev. E 66 (2002) 057104]
Zipf Distribution of U.S. Firm Sizes
Robert L. Axtell Science, Vol 293, Issue 5536, 1818-1820 , 7 September 2001
Bose-Einstein Condensation in Financial Systems
Kestutis Staliunas [cond-mat/0303271]
Entropic basis of the Pareto law
Philip K. Rawlings1, , David Reguera, and Howard Reiss Physica A: Statistical Mechanics and its Applications Volume 343 , 15 November 2004, Pages 643-652 doi:10.1016/j.physa.2004.06.152
Job match and income distributions
The statistical distribution of money and the rate of money transference
Juan C. Ferrero [cond-mat/0306322]
The statistical distribution of money and the rate of money transference
Juan C. Ferrero Physica A: Statistical Mechanics and its Applications Volume 341 , 1 October 2004, Pages 575-585 doi:10.1016/j.physa.2004.05.029
On the size distribution of firms: additional evidence from the G7 countries
Edoardo Gaffeoa, Mauro Gallegati, , b and Antonio Palestrini Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 117-123 doi:10.1016/S0378-4371(02)01890-3
Power law distribution of wealth in population based on a modified Equ[i-acute]luz-Zimmermann model
Nonequilibrium Thermodynamics of Wealth Condensation
physics/0601191 Dieter Braun
Flashing annihilation term of a logistic kinetic as a mechanism leading to Pareto distributions
cond-mat/0602491 Ryszard Zygad\l{}o
On Stable Pareto Laws in a Hierarchical Model of Economy
[physics/0607180] How Do Output Growth Rate Distributions Look Like? Some Time-Series Evidence on OECD Countries
[physics/0607293] k-Generalized Statistics in Personal Income Distribution
[physics/0608215] Statistical equilibrium in simple exchange games I
[physics/0608221] Growth and Allocation of Resources in Economics: The Agent-Based Approach
[0705.3430] The Macro Model of the Inequality Process and The Surging Relative Frequency of Large Wage Incomes






my

Inelastically scattering particles and wealth distribution in an open economy
Frantisek Slanina [cond-mat/0311235]
Inelastically scattering particles and wealth distribution in an open economy
Frantisek Slanina Phys. Rev. E 69, 046102 (2004)







killed multiplicative proc

From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature
William J. Reed Barry D. Hughes Phys. Rev. E 66, 067103 (2002) doi:10.1103/PhysRevE.66.067103
The Pareto law of incomes - an explanation and an extension
William J. Reed Physica A: 319, (2003) 469-486






Solomon, Lotka-Volterra

Power, Levy, exponential and Gaussian-like regimes in autocatalytic financial systems
Z.F. Huang and S. Solomon The European Physical Journal B 20, April 2001 Pages: 601 - 607 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=20&issue=4&spage=601
Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements
Ofer Malcai, Ofer Biham, and Sorin Solomon Physical Review E 1999 -- Volume 60, Issue 2, pp. 1299-1303 http://link.aps.org/abstract/PRE/v60/p1299
New evidence for the power-law distribution of wealth
Moshe Levy and Sorin Solomon Physica A: Statistical and Theoretical Physics Volume 242, Issues 1-2 , 1 August 1997, Pages 90-94 doi:10.1016/S0378-4371(97)00217-3
Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf
S. Solomon1 and P. Richmond2 Eur. Phys. J. B 27, 257-261 (2002) DOI: 10.1140/epjb/e20020152
Power Laws are Boltzmann Laws in Disguise
POWER LAWS ARE DISGUISED BOLTZMANN LAWS, PETER RICHMOND , SORIN SOLOMON International Journal of Modern Physics C, Vol. 12, No. 3 (2001) 333-343 doi:10.1142/S0129183101001754 [cond-mat/0010222]
Power law distributions and dynamic behaviour of stock markets
P. Richmond Eur. Phys. J. B 20, 523-526 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=20&issue=4&spage=523
Power Laws are Logarithmic Boltzmann Laws
M. Levy, S. Solomon Int. J. Mod. Phys. C 7 (1996) 595-601 [adap-org/9607001]
Spontaneous Scaling Emergence in Generic Stochastic Systems
S. Solomon, M. Levy, Int. J. Mod. Phys. C 7 (1996) 745-751 [adap-org/9609002]
Stochastic Multiplicative Processes for Financial Markets
Zhi-Feng Huang, Sorin Solomon Physica A 306 (2002) 412-422 [cond-mat/0110273]
Long-time fluctuations in a dynamical model of stock market indices
Ofer Biham,1 Zhi-Feng Huang,2 Ofer Malcai,1 and Sorin Solomon Phys. Rev. E 64, 026101 (2001) URL: http://link.aps.org/abstract/PRE/v64/e026101 doi:10.1103/PhysRevE.64.026101
Theoretical analysis and simulations of the generalized Lotka-Volterra model
Ofer Malcai,1 Ofer Biham,1 Peter Richmond,2 and Sorin Solomon Phys. Rev. E 66, 031102 (2002) URL: http://link.aps.org/abstract/PRE/v66/e031102 doi:10.1103/PhysRevE.66.031102
abstract adap-org/9609002
Stability of Pareto-Zipf Law in Non-Stationary Economies
cond-mat/0012479 Sorin Solomon , Peter Richmond
Power Laws of Wealth, Market Order Volumes and Market Returns
cond-mat/0102423 Sorin Solomon , Peter Richmond
Finite market size as a source of extreme wealth inequality and market instability
cond-mat/0103170 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 294, 503-513 (2001)
Finite market size as a source of extreme wealth inequality and market instability
cond-mat/0103170 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 294, 503-513 (2001)
Stochastic Multiplicative Processes for Financial Markets
cond-mat/0110273 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 306 (2002) 412-422
Stochastic Lotka-Volterra Systems of Competing Auto-Catalytic Agents Lead Generically to Truncated Pareto Power Wealth Distribution, Truncated Levy Distribution of Market Returns, Clustered Volatility, Booms and Craches
cond-mat/9803367 Sorin Solomon (Hebrew University)
Generalized Lotka-Volterra (GLV) Models and Generic Emergence of Scaling Laws in Stock Markets
cond-mat/9901250 Sorin Solomon
Theoretical Analysis and Simulations of the Generalized Lotka-Volterra Model
cond-mat/0208514 Ofer Malcai , Ofer Biham , Peter Richmond , Sorin Solomon
Long-Time Fluctuations in a Dynamical Model of Stock Market Indices
cond-mat/0208464 Ofer Biham , Zhi-Feng Huang , Ofer Malcai , Sorin Solomon Journal-ref: phys. rev. E 64, 026101 (2001)
abstract adap-org/9804001
Generic emergence of power law distributions and L[e-acute]vy-Stable intermittent fluctuations in discrete logistic systems
Ofer Biham, Ofer Malcai, Moshe Levy, and Sorin Solomon Physical Review E -- August 1998 -- Volume 58, Issue 2, pp. 1352-1358 URL: http://link.aps.org/abstract/PRE/v58/p1352 doi:10.1103/PhysRevE.58.1352
ScienceDirect - Economics Letters : The Forbes 400 and the Pareto wealth distribution






historical

The Pareto-Levy law and the distribution of income
B. Mandelbrot, International Economic Review: Vol. 1, No. 2, (May, 1960), pp. 79-106. Stable URL: http://links.jstor.org/sici?sici=0020-6598%28196005%291%3A2%3C79%3ATPLATD%3E2.0.CO%3B2-O
Measurement of inequality of incomes
Corrado Gini Economic Journal: Vol. 31, No. 121, pp. 124-126 Stable URL: http://links.jstor.org/sici?sici=0013-0133%28192103%2931%3A121%3C124%3AMOIOI%3E2.0.CO%3B2-P
The Pareto Law and the distribution of income
G. F. Shirras, Economic Journal: Vol. 45, No. 180, pp. 663-681 Stable URL: http://links.jstor.org/sici?sici=0013-0133%28193512%2945%3A180%3C663%3ATPLATD%3E2.0.CO%3B2-V
A new Illustration of Pareto Law
J.C. Stamp, Journal of the Royal Statistical Society: Vol. 77, No. 2,(Jan., 1914), pp. 200-204. Stable URL: http://links.jstor.org/sici?sici=0952-8385%28191401%2977%3A2%3C200%3AANIOPL%3E2.0.CO%3B2-9
Cours d'Economie Politique, Vilfredo Pareto Review author[s]: Fred D Merritt
Review of Cours d'Economie Politique The Journal of Political Economy, Vol. 6, No. 4. (Sep., 1898), pp. 549-552. Stable URL: http://links.jstor.org/sici?sici=0022-3808%28189809%296%3A4%3C549%3ACDP%3E2.0.CO%3B2-1
JC Maxwell: On the dynamical theory of gases
JC Maxwell On the dynamical theory of gases Philosophical Transactions of the Royal Society of London: Vol. 157 (1867), p. 49-88 Stable URL: http://links.jstor.org/sici?sici=0261-0523%281867%29157%3C49%3AOTDTOG%3E2.0.CO%3B2-H
The New Theories of Economics
Vilfredo Pareto The Journal of Political Economy, Vol. 5, No. 4. (Sep., 1897), pp. 485-502. Stable URL: http://links.jstor.org/sici?sici=0022-3808%28189709%295%3A4%3C485%3ATNTOE%3E2.0.CO%3B2-R
The New Theories of Economics by Vilfredo Pareto
Journal of Political Economy volume 5, 189?
Vilfredo Pareto Guide
Pareto's Law
D. H. Macgregor The Economic Journal, Vol. 46, No. 181. (Mar., 1936), pp. 80-87. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28193603%2946%3A181%3C80%3APL%3E2.0.CO%3B2-D
On Pareto's Law
C. Bresciani-Turroni Journal of the Royal Statistical Society, Vol. 100, No. 3. (1937), pp. 421-432. Stable URL: http://links.jstor.org/sici?sici=0952-8385%281937%29100%3A3%3C421%3AOPL%3E2.0.CO%3B2-L
A Model of Income Distribution
D. G. Champernowne The Economic Journal, Vol. 63, No. 250. (Jun., 1953), pp. 318-351. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28195306%2963%3A250%3C318%3AAMOID%3E2.0.CO%3B2-N
Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails
Elliott W. Montroll and Michael F. Shlesinger Journal of Statistical Physics Volume 32, Number 2 Date: August 1983 Pages: 209 - 230 DOI: 10.1007/BF01012708






growth

Scaling behavior in economics: The problem of quantifying company growth
Luís A. Nunes Amaralb, d, a, Sergey V. Buldyreva, Shlomo Havlinc, d, d, a, Philipp Maassa, 1, Michael A. Salingera, H. Eugene Stanleya, , and Michael H. R. Stanley Physica A Volume 244, Issues 1-4 , 1 October 1997, Pages 1-24 doi:10.1016/S0378-4371(97)00301-4
Universal Features in the Growth Dynamics of Complex Organizations
Youngki Lee1, Luís A. Nunes Amaral1,2, David Canning3, Martin Meyer1, and H. Eugene Stanley1 Phys. Rev. Lett. 81, 3275 (1998) URL: http://link.aps.org/abstract/PRL/v81/p3275 DOI: 10.1103/PhysRevLett.81.3275
Universal features in the growth dynamics of complex organizations
Youngki Lee (BU), Luis A. N. Amaral (MIT), David Canning (HIID), Martin Meyer (BU), H. Eugene Stanley (BU)
Expansion-modification systems: A model for spatial 1/f spectra
Wentian Li Phys. Rev. A 43, 5240–5260 (1991) URL: http://link.aps.org/abstract/PRA/v43/p5240 DOI: 10.1103/PhysRevA.43.5240
Power Law Scaling for a System of Interacting Units with Complex Internal Structure
Luís A. Nunes Amaral1,2, Sergey V. Buldyrev2, Shlomo Havlin2,3, Michael A. Salinger4, and H. Eugene Stanley Phys. Rev. Lett. 80, 1385 (1998) URL: http://link.aps.org/abstract/PRL/v80/p1385 DOI: 10.1103/PhysRevLett.80.1385
Power Law Scaling for a System of Interacting Units with Complex Internal Structure
L.A.N. Amaral (MIT), S.V. Buldyrev (Boston Univ), S. Havlin (BU), M.A. Salinger (BU), H.E. Stanley (BU) cond-mat/9707342
Scaling Behavior in Economics: I. Empirical Results for Company Growth
Luís A. Nunes Amaral1, 2, Sergey V. Buldyrev1, Shlomo Havlin1, 3, Heiko Leschhorn1, Philipp Maass1, Michael A. Salinger4, H. Eugene Stanley1 and Michael H.R. Stanley1 J. Phys. I France 7 (1997) 621-633 DOI: 10.1051/jp1:1997180
Scaling behavior in economics: I. Empirical results for company growth
L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, M.H.R. Stanley cond-mat/9702082
Scaling Behavior in Economics: II. Modeling of Company Growth
Sergey V. Buldyrev1, Luís A. Nunes Amaral1, 2, Shlomo Havlin1, 3, Heiko Leschhorn1, Philipp Maass1, Michael A. Salinger4, H. Eugene Stanley1 and Michael H.R. Stanley J. Phys. I France 7 (1997) 635-650 DOI: 10.1051/jp1:1997181
Scaling behavior in economics: II. Modeling of company growth
S.V. Buldyrev, L.A.N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, M.H.R. Stanley cond-mat/9702085
On the Size Distribution of Business Firms
Robert E. Lucas, Jr. The Bell Journal of Economics, Vol. 9, No. 2. (Autumn, 1978), pp. 508-523. Stable URL: http://links.jstor.org/sici?sici=0361-915X%28197823%299%3A2%3C508%3AOTSDOB%3E2.0.CO%3B2-S
The Size and Growth of Firms
Ajit Singh; Geoffrey Whittington Review of Economic Studies: Vol. 42, No. 1. (Jan., 1975), pp. 15-26. Stable URL: http://links.jstor.org/sici?sici=0034-6527%28197501%2942%3A1%3C15%3ATSAGOF%3E2.0.CO%3B2-3
Growth and Size of Firms
Peter E. Hart; Nicholas Oulton The Economic Journal, Vol. 106, No. 438. (Sep., 1996), pp. 1242-1252. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28199609%29106%3A438%3C1242%3AGASOF%3E2.0.CO%3B2-V
Robert Pierre Louis GIBRAT (1904-1980)
THE GROWTH DYNAMICS OF GERMAN BUSINESS FIRMS
JOHANNES VOIT Advances in Complex Systems, Vol. 4, No. 1 (2001) 149-162 doi:10.1142/S0219525901000127
Statistical models for company growth
Matthieu Wyart, Jean-Philippe Bouchaud cond-mat/0210479
Statistical models for company growth
Matthieu Wyarta and Jean-Philippe Bouchaud Physica A: Statistical Mechanics and its Applications Volume 326, Issues 1-2 , 1 August 2003, Pages 241-255 doi:10.1016/S0378-4371(03)00267-X
Gibrat's Law and the Firm Size / Firm Growth Relationship in Italian Services
R. Piergiovanni (Statistics Italy, Rome) E. Santarelli (University of Bologna) L. Klomp (Ministry of Economic Affairs, The Hague) A.R. Thurik (thurik@few.eur.nl) (CASBEC, Erasmus University Rotterdam, and EIM Business and Policy Research, Zoetermeer)
Matteo Richiardi: Generalizing Gibrat
Matteo Richiardi Journal of Artificial Societies and Social Simulation vol. 7, no. 1
On size and growth of business firms
G. De Fabritiia, F. Pammolli, and M. Riccaboni Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 38-44 doi:10.1016/S0378-4371(03)00043-8
The variance of corporate growth rates
John Sutton Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 45-48 doi:10.1016/S0378-4371(03)00004-9
A stochastic model of firm growth
[physics/0609020] A Generalized Preferential Attachment Model for Business Firms Growth Rates: II. Mathematical Treatment
[physics/0609011] A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence
[physics/0608197] On Capital Dependent Dynamics of Knowledge
[physics/0703023] A transactional theory of fluctuations in company size





on network

A family-network model for wealth distribution in societies
R. Coelho, Z. Neda, J.J. Ramasco, M.A. Santos [cond-mat/0412516]
Mean-field limit of systems with multiplicative noise

Dynamic Process of Money Transfer Models





physics/0507162
Yougui Wang , Ning Ding

Prospects for Money Transfer Models





physics/0507161
Yougui Wang , Ning Ding , Ning Xi

How Required Reserve Ratio Affects Distribution and Velocity of Money





physics/0507160
Ning Xi , Ning Ding , Yougui Wang

The Velocity of Money in a Life-Cycle Model





physics/0507159
Yougui Wang , Hanqing Qiu
Journal-ref: Physica A 353(C), 493(2005)

The Velocity of Money in a Life-Cycle Model





Domenico Delli Gatti, Corrado Di Guilmi, Edoardo Gaffeo and Mauro Gallegati, Physica A: Statistical Mechanics and its Applications Volume 344, Issues 1-2 , 1 December 2004, Pages 8-13 doi:10.1016/j.physa.2004.06.079

[physics/0702248] The uniqueness of company size distribution function from tent-shaped growth rate distribution




sumber: http://www.fzu.cz/~slanina/bookmark_files/bkm2-7.html

No comments:

Post a Comment