- Small-World Effects in Wealth Distribution
- cond-mat/0108482 Wataru Souma , Yoshi Fujiwara , Hideaki Aoyama
- Small-World Effects in Wealth Distribution
- Hideaki Aoyama, Yuichi Nagahara, Mitsuhiro P. Okazaki, Wataru Souma, Hideki Takayasu, Misako Takayasu [cond-mat/0006038]
- Small-World Effects in Wealth Distribution
- Hideaki Aoyama, Yuichi Nagahara, Mitsuhiro P. Okazaki, Wataru Souma, Hideki Takayasu, Misako Takayasu [cond-mat/0006038]
- Small-World Effects in Wealth Distribution
- HIDEAKI AOYAMA and WATARU SOUMA YUICHI NAGAHARA MITSUHIRO P. OKAZAKI HIDEKI TAKAYASU MISAKO TAKAYASU Fractals, Vol. 8, No. 3 (2000) 293-300 doi:10.1142/S0218348X0000038X
- Small-World Effects in Wealth Distribution
- Wataru Souma [cond-mat/0011373]
- Small-World Effects in Wealth Distribution
- WATARU SOUMA Fractals 9 No. 4 (2001) 463-470
- Small-World Effects in Wealth Distribution
- Kenji Kawamura, Naomichi Hatano [cond-mat/0303331]
- Small-World Effects in Wealth Distribution
- Masahiro Anazawa, Atushi Ishikawa, Tadao Suzuki, Masashi Tomoyose [cond-mat/0307116]
- Small-World Effects in Wealth Distribution
- Takayuki Mizuno, Misako Takayasu, Hideki Takayasu cond-mat/0307270
- Small-World Effects in Wealth Distribution
- Takayuki Mizuno, Makoto Katori, Hideki Takayasu, Misako Takayasu [cond-mat/0308365]
- Small-World Effects in Wealth Distribution
- Yoshi Fujiwara, Corrado Di Guilmi, Hideaki Aoyama, Mauro Gallegati, Wataru Souma [cond-mat/0310061]
- Small-World Effects in Wealth Distribution
- Yoshi Fujiwara, Corrado Di Guilmi, Hideaki Aoyama, Mauro Gallegati and Wataru Souma Physica A Volume 335, Issues 1-2 , 1 April 2004, Pages 197-216 doi:10.1016/j.physa.2003.12.015
- Small-World Effects in Wealth Distribution
- Yoshikazu Ohtaki, Hiroshi H. Hasegawa [cond-mat/0312568]
- Small-World Effects in Wealth Distribution
- Atushi Ishikawa [cond-mat/0409145]
- Small-World Effects in Wealth Distribution
- Atushi Ishikawa, Tadao Suzuki, Masashi Tomoyose cond-mat/0203399
- Small-World Effects in Wealth Distribution
- Yoshi Fujiwara, Wataru Souma, Hideaki Aoyama, Taisei Kaizoji, Masanao Aoki cond-mat/0208398
- Small-World Effects in Wealth Distribution
- Yoshi Fujiwara, , a, Wataru Soumab, Hideaki Aoyamac, Taisei Kaizojid and Masanao Aokie Physica A: Statistical Mechanics and its Applications Volume 321, Issues 3-4 , 15 April 2003, Pages 598-604 doi:10.1016/S0378-4371(02)01663-1
- Small-World Effects in Wealth Distribution
- Wataru Souma cond-mat/0202388
- Small-World Effects in Wealth Distribution
- Hideaki Aoyama, , a, Wataru Soumab and Yoshi Fujiwarac Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 352-358 Proceedings of the International Econophysics Conference doi:10.1016/S0378-4371(02)01855-1
- Small-World Effects in Wealth Distribution
- Akihiro Fujihara, Toshiya Ohtsuki, and Hiroshi Yamamoto Phys. Rev. E 70, 031106 (2004)
- Small-World Effects in Wealth Distribution
- K. Okuyama, M. Takayasu, and H. Takayasu Physica A: Volume 269, Issue 1 , 1 July 1999, Pages 125-131 doi:10.1016/S0378-4371(99)00086-2
- Small-World Effects in Wealth Distribution
- Wataru Souma, Yoshi Fujiwara, Hideaki Aoyama cond-mat/0108482
- Empirical study and model of personal income
- physics/0505173 Wataru Souma , Makoto Nirei
- Pareto index induced from the scale of companies
- physics/0506066 Atushi Ishikawa
- Derivation of the distribution from extended Gibrat's law
- physics/0508178 Atushi Ishikawa
- Annual change of Pareto index dynamically deduced from the law of detailed quasi-balance
- physics/0511220 Atushi Ishikawa
- Re-examination of the size distribution of firms
- [physics/0606068] Bose-Einstein condensation in a simple model of economy and emergence of Pareto-tails in wealth distributions
- [physics/0607131] Dynamical change of Pareto index in Japanese land prices
- [physics/0607217] The uniqueness of the profits distribution function in the middle scale region
- JC Maxwell: On the dynamical theory of gases
- JC Maxwell On the dynamical theory of gases Philosophical Transactions of the Royal Society of London: Vol. 157 (1867), p. 49-88 Stable URL: http://links.jstor.org/sici?sici=0261-0523%281867%29157%3C49%3AOTDTOG%3E2.0.CO%3B2-H
- The Inelastic Maxwell Model
- E. Ben-Naim, P.L. Krapivsky [cond-mat/0301238]
- Self-Similarity in Random Collision Processes
- Daniel ben-Avraham, Eli Ben-Naim, Katja Lindenberg, Alexandre Rosas [cond-mat/0308175]
- Self-similarity in random collision processes
- Daniel ben-Avraham,1 Eli Ben-Naim,2 Katja Lindenberg,3 and Alexandre Rosas3 Phys. Rev. E 68, 050103(R) (2003) doi:10.1103/PhysRevE.68.050103
- Velocity Distribution in a Viscous Granular Gas
- Alexandre Rosas, Daniel ben-Avraham, Katja Lindenberg [cond-mat/0404405]
- Impurity in a Granular Fluid
- E. Ben-Naim, P.L. Krapivsky cond-mat/0203099
- Multiscaling in inelastic collisions
- E. Ben-Naim1 and P. L. Krapivsky2 Physical Review E -- January 2000 -- Volume 61, Issue 1, pp. R5-R8
- Nontrivial Velocity Distributions in Inelastic Gases
- cond-mat/0111044 P. L. Krapivsky, E. Ben-Naim
- Nontrivial velocity distributions in inelastic gases
- P L Krapivsky and E Ben-Naim 2002 J. Phys. A: Math. Gen. 35 L147-L152 doi:10.1088/0305-4470/35/11/103 URL: http://stacks.iop.org/0305-4470/35/L147
- Particle systems with stochastic passing
- I. Ispolatov1 and P. L. Krapivsky2 Physical Review E -- March 2000 -- Volume 61, Issue 3, pp. R2163-R2167 http://link.aps.org/abstract/PRE/v61/pR2163
- Scaling, Multiscaling, and Nontrivial Exponents in Inelastic Collision Processes
- E. Ben-Naim, P.L. Krapivsky cond-mat/0202332
- Scaling, multiscaling, and nontrivial exponents in inelastic collision processes
- E. Ben-Naim1 and P. L. Krapivsky2 Phys. Rev. E 66, 011309 (2002) doi:10.1103/PhysRevE.66.011309
- Stationary states and energy cascades in inelastic gases
- 10.1103/PhysRevLett.94.138001
- Scaling Solutions of Inelastic Boltzmann Equations with Over-populated High Energy Tails
- M. H. Ernst, R. Brito [cond-mat/0112417]
- Asymptotic solutions of the nonlinear Boltzmann equation for dissipative systems
- M.H. Ernst , R. Brito [cond-mat/0304608]
- Anomalous velocity distributions in inelastic Maxwell gases
- R. Brito, M. H. Ernst [cond-mat/0310406]
- Driven inelastic Maxwell models with high energy tails
- M. H. Ernst R. Brito Phys. Rev. E 65, 040301(R) (2002) doi:10.1103/PhysRevE.65.040301
- High-energy tails for inelastic Maxwell models
- M. H. Ernst1 and R. Brito2 Europhys. Lett., 58 (2) , pp. 182-187 (2002) DOI: 10.1209/epl/i2002-00622-0
- High-energy tails for inelastic Maxwell models
- M. H. Ernst1 and R. Brito2 Europhys. Lett., 58 (2) , pp. 182-187 (2002) DOI: 10.1209/epl/i2002-00622-0
- Velocity Tails for Inelastic Maxwell Models
- Matthieu H. Ernst, Ricardo Brito cond-mat/0111093
- Cooling of a lattice granular fluid as an ordering process
- A. Baldassarri,1,2 U. Marini Bettolo Marconi,1 and A. Puglisi2 Phys. Rev. E 65, 051301 (2002) doi:10.1103/PhysRevE.65.051301
- Driven granular gases with gravity
- A. Baldassarri,1 U. Marini Bettolo Marconi,1 A. Puglisi,2 and A. Vulpiani2 Phys. Rev. E 64, 011301 (2001) doi:10.1103/PhysRevE.64.011301
- Influence of correlations on the velocity statistics of scalar granular gases
- A. Baldassarri1, U. Marini Bettolo Marconi1 and A. Puglisi2 Europhys. Lett., 58 (1) , pp. 14-20 (2002) DOI: 10.1209/epl/i2002-00600-6
- Mean-field model of free-cooling inelastic mixtures
- Umberto Marini Bettolo Marconi1,2 and Andrea Puglisi3 Phys. Rev. E 65, 051305 (2002) doi:10.1103/PhysRevE.65.051305
- Steady-state properties of a mean-field model of driven inelastic mixtures
- Daniela Paolotti,1 Alain Barrat,2 Umberto Marini Bettolo Marconi,1 and Andrea Puglisi Phys. Rev. E 69, 061304 (2004) doi:10.1103/PhysRevE.69.061304
- Stable Equilibrium Based on Levy Statistics: Stochastic Collision Models Approach
- Eli Barkai [cond-mat/0310509]
- Stable equilibrium based on Levy statistics: Stochastic collision models approach
- Eli Barkai Phys. Rev. E 68, 055104(R) (2003) doi:10.1103/PhysRevE.68.055104
- Exponential velocity tails in a driven inelastic Maxwell model
- Tibor Antal, Michel Droz, Adam Lipowski cond-mat/0207102
- Exponential velocity tails in a driven inelastic Maxwell model
- T. Antal,1,2 Michel Droz,1 and Adam Lipowski Phys. Rev. E 66, 062301 (2002) doi:10.1103/PhysRevE.66.062301
- Violation of Molecular Chaos in dissipative gases
- Thorsten Poeschel, Nikolai V. Brilliantov, Thomas Schwager cond-mat/0210058
- Granular Gases - the early stage
- Nikolai V. Brilliantov, Thorsten Poeschel cond-mat/0203401
- On high energy tails in inelastic gases
- cond-mat/0510108
R. Lambiotte , L. Brenig , J.M. Salazar - Power-law velocity distributions in granular gases
- [math-ph/0608035] On the self-similar asymptotics for generalized non-linear kinetic Maxwell models
- Effects of Randomness on Power Law Tails in Multiplicatively Interacting Stochastic Processes
- Toshiya Ohtsuki, Akihiro Fujihara, Hiroshi Yamamoto [cond-mat/0312357]
- Effects of randomness on power law tails in multiplicatively interacting stochastic processes
- Toshiya Ohtsuki , , Akihiro Fujihara and Hiroshi Yamamoto Physics Letters A Volume 324, Issues 5-6 , 26 April 2004, Pages 378-382 doi:10.1016/j.physleta.2004.03.013
- Pareto Law in a Kinetic Model of Market with Random Saving Propensity
- Arnab Chatterjee, Bikas K. Chakrabarti, S. S. Manna [cond-mat/0301289]
- Ideal Gas-Like Distributions in Economics: Effects of Saving Propensity
- Bikas K. Chakrabarti, Arnab Chatterjee [cond-mat/0302147]
- Stochastic Maps, Wealth Distribution in Random Asset Exchange Models and the Marginal Utility of Relative Wealth
- Sitabhra Sinha [cond-mat/0304324]
- Analytic treatment of a trading market model
- Arnab Das, Sudhakar Yarlagadda [cond-mat/0304685]
- A distribution function analysis of wealth distribution
- Arnab Das, Sudhakar Yarlagadda [cond-mat/0310343]
- Money in Gas-Like Markets: Gibbs and Pareto Laws
- Arnab Chatterjee, Bikas K. Chakrabarti, S. S. Manna [cond-mat/0311227]
- Gibbs versus non-Gibbs distributions in money dynamics
- Marco Patriarca, Anirban Chakraborti, Kimmo Kaski [cond-mat/0312167]
- A statistical model with a standard Gamma distribution
- Marco Patriarca, Anirban Chakraborti, Kimmo Kaski [cond-mat/0402200]
- Statistical model with a standard Gamma distribution
- Marco Patriarca,1 Anirban Chakraborti,2 and Kimmo Kaski Phys. Rev. E 70, 016104 (2004) doi:10.1103/PhysRevE.70.016104
- Distributions of money in model markets of economy
- Anirban Chakraborti cond-mat/0205221 Int. J. Mod. Phys. C 13, 1315 (2002)
- An analytic treatment of the Gibbs-Pareto behavior in wealth distribution
- Arnab Das, Sudhakar Yarlagadda [cond-mat/0409329]
- Master equation for a kinetic model of trading market and its analytic solution
- cond-mat/0501413 Arnab Chatterjee , Bikas K. Chakrabarti , Robin B. Stinchcombe Journal-ref: Phys. Rev. E 72 (2005) 026126
- Evidence for Power-law tail of the Wealth Distribution in India
- cond-mat/0502166 Sitabhra Sinha Journal-ref: Physica A, Vol 359, pp 555-562 (2006)
- Analyzing money distributions in `ideal gas' models of markets
- physics/0505047 Arnab Chatterjee , Bikas K. Chakrabarti , Robin B. Stinchcombe
- The Rich Are Different!: Pareto Law from asymmetric interactions in asset exchange models
- physics/0504197 Sitabhra Sinha
- Blockbusters, Bombs and Sleepers: The income distribution of movies
- physics/0504198 Sitabhra Sinha , Raj Kumar Pan
- A stochastic model of wealth distribution
- physics/0504137 Indrani Bose , Subhasis Banerjee
- Ideal-Gas Like Markets: Effect of Savings
- physics/0507136 Arnab Chatterjee , Bikas K Chakrabarti
- A common origin of the power law distributions in models of market and earthquake
- physics/0510038 Pratip Bhattacharyya , Arnab Chatterjee , Bikas K Chakrabarti
- Models of wealth distributions: a perspective
- physics/0604161 Abhijit Kar Gupta
- A Variational Principle for Pareto's power law
- [physics/0607258] Ideal-gas like market models with savings: quenched and annealed cases
- [physics/0608174] Many-agent models in economic and social sciences
- [physics/0609069] Kinetic market models with single commodity having price fluctuations
- [physics/0703201] Economic Inequality: Is it Natural?
- Dynamical optimization theory of a diversified portfolio
- Matteo Marsili, Sergei Maslov and Yi-Cheng Zhang Physica A: Statistical and Theoretical Physics Volume 253, Issues 1-4 , 1 May 1998, Pages 403-418 doi:10.1016/S0378-4371(98)00075-2
- Wealth condensation in a simple model of economy
- Jean-Philippe Bouchaud, and Marc Mezard, Physica A, Volume 282, Issues 3-4 , 15 July 2000, Pages 536-545 doi:10.1016/S0378-4371(00)00205-3
- Wealth condensation in a simple model of economy
- cond-mat/0002374
- Wealth condensation in pareto macroeconomies
- Z. Burda,1,2 D. Johnston,3 J. Jurkiewicz,1 M. Kamiski,4 M. A. Nowak,1 G. Papp,5 and I. Zahed6 Phys. Rev. E 65, 026102 (2002) doi:10.1103/PhysRevE.65.026102
- Comment on ``Wealth condensation in Pareto macroeconomies''
- Ding-wei Huang Phys. Rev. E 68, 048101 (2003) URL: http://link.aps.org/abstract/PRE/v68/e048101 doi:10.1103/PhysRevE.68.048101
- Wealth distributions in asset exchange models
- S. Ispolatov - P.L. Krapivsky - S. Redner Eur. Phys. J. B 2, 267-276
- Is Econophysics a Solid Science?
- Z. Burda, J. Jurkiewicz, M.A. Nowak [cond-mat/0301096]
- Wealth Condensation in Pareto Macro-Economies
- Research in Econophysics
- Victor M. Yakovenko [cond-mat/0302270]
- Applications of physics to economics and finance: Money, income, wealth, and the stock market
- Adrian A. Dragulescu [cond-mat/0307341]
- "Thermal" and "superthermal" two-class distribution of personal income
- A. Christian Silva, Victor M. Yakovenko [cond-mat/0406385]
- Statistical Mechanics of Money, Income, and Wealth: A Short Survey
- Adrian A. Dragulescu, Victor M. Yakovenko cond-mat/0211175
- Evidence for the exponential distribution of income in the USA
- Adrian Dragulescu, Victor M. Yakovenko cond-mat/0008305
- Statistical mechanics of money
- A. Dragulescu A1 and V.M. Yakovenko The European Physical Journal B 17, October 2000 Pages: 723 - 729 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=17&issue=4&spage=723
- Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States
- Adrian Dragulescu and Victor M. Yakovenko Physica A: Statistical Mechanics and its Applications Volume 299, Issues 1-2 , 1 October 2001, Pages 213-221 doi:10.1016/S0378-4371(01)00298-9
- Statistical mechanics of money
- cond-mat/0001432 Adrian Dragulescu , Victor M. Yakovenko Journal-ref: Eur. Phys. J. B 17, 723 (2000)
- A study of the personal income distribution in Australia
- Wealth redistribution with finite resources
- nlin/0109015 S. Pianegonda , J. R. Iglesias , G. Abramson , J. L. Vega Journal-ref: Physica A, 322, 667-675 (2003)
- Wealth redistribution with finite resources
- S. Pianegonda, J.R. Iglesias [cond-mat/0311113]
- Wealth redistribution with finite resources
- J.R. Iglesias, S. Goncalves, G. Abramson, J.L. Vega [cond-mat/0311127]
- Wealth redistribution with finite resources
- J. R. Iglesias, , a, b, S. Gonçalvesb, S. Pianegondab, J. L. Vegac and G. Abramsond Physica A: Statistical Mechanics and its Applications Volume 327, Issues 1-2 , 1 September 2003, Pages 12-17 Proceedings of the XIIIth Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics doi:10.1016/S0378-4371(03)00430-8
- Wealth redistribution with finite resources
- S. Pianegonda, , a, J. R. Iglesias, a, G. Abramson, b and J. L. Vega Physica A: Statistical Mechanics and its Applications Volume 322 , 1 May 2003, Pages 667-675 doi:10.1016/S0378-4371(02)01737-5
- Economic exchanges in a stratified society: End of the middle class?
- A Trade-Investment Model for Distribution of Wealth
- Nicola Scafetta, Bruce J. West, Sergio Picozzi [cond-mat/0306579]
- An out-of-equilibrium model of the distributions of wealth
- Nicola Scafetta, Sergio Picozzi, Bruce J. West [cond-mat/0403045]
- Pareto's law: a model of human sharing and creativity
- Nicola Scafetta, Sergio Picozzi, Bruce J. West cond-mat/0209373
- Nonextensive statistical mechanics and economics
- Constantino Tsallis, Celia Anteneodo, Lisa Borland, Roberto Osorio [cond-mat/0301307]
- Nonextensive statistical mechanics and economics
- Constantino Tsallis, Celia Anteneodo, Lisa Borland and Roberto Osorio Physica A: Statistical Mechanics and its Applications, Volume 324, Issues 1-2, 1 June 2003, Pages 89-100 doi:10.1016/S0378-4371(03)00042-6
- Dynamical Foundations of Nonextensive Statistical Mechanics
- Christian Beck Phys. Rev. Lett. 87, 180601 (2001) doi:10.1103/PhysRevLett.87.180601
- Nonextensive statistical mechanics: A brief review of its present status
- Constantino Tsallis cond-mat/0205571
- Exchanges in complex networks: income and wealth distributions
- T. Di Matteo, T. Aste, S. T. Hyde [cond-mat/0310544]
- Physics of Econophysics
- Yougui Wang, Jinshan Wu, Zengru Di [cond-mat/0401025]
- Cooperation Comes With Exploitation -- A Study Of The Wealth Inequality In The Minority Game
- K. H. Ho, F. K. Chow, H. F. Chau [cond-mat/0402411]
- Wealth Dynamics on Complex Networks
- D. Garlaschelli, M. I. Loffredo [cond-mat/0402466]
- Power Law Distributions in Korean Household Incomes
- Kyungsik Kim, Seong-Min Yoon [cond-mat/0403161]
- Physical Picture of the Insurance Market
- Amir Hossein Darooneh [cond-mat/0404680]
- Power Law Distribution of Wealth in a Money-Based Model
- Yan-Bo Xie, Bo Hu, Tao Zhou, Bing-Hong Wang [cond-mat/0405288]
- Evidence for the Independence of Waged and Unwaged Income, Evidence for Boltzmann Distributions in Waged Income, and the Outlines of a Coherent Theory of Income Distribution
- G. Willis, J. Mimkes [cond-mat/0406694]
- Dynamics of Money and Income Distributions
- Przemyslaw Repetowicz Stefan Hutzler Peter Richmond [cond-mat/0407770]
- Power Law Tails in the Italian Personal Income Distribution
- F. Clementi, M. Gallegati [cond-mat/0408067]
- Laser Welfare: First Steps in Econodynamic Engineering
- G. Willis [cond-mat/0408227]
- Empirical nonextensive laws for the geographical distribution of wealth
- Ernesto P. Borges cond-mat/0205520
- Lagrange statistics in systems (markets) with price constraints: Analysis of property, car sales, marriage and job markets by the Boltzmann function and the Pareto distribution
- J. Mimkes (1), Th. Fruend (1), G. Willis cond-mat/0204234
- PINC-01--Part 1
- Demographic survey
- A kinetic approach to some quasi-linear laws of macroeconomics
- M. Gligor1and M. Ignat Eur. Phys. J. B 30, 125-135 (2002) DOI: 10.1140/epjb/e2002-00366-7
- Wealth distribution in an ancient Egyptian society
- A. Y. Abul-Magd Phys. Rev. E 66, 057104 (2002) URL: http://link.aps.org/abstract/PRE/v66/e057104 doi:10.1103/PhysRevE.66.057104
- Wealth dynamics on complex networks
- Diego Garlaschelli, and Maria I. Loffredo, Physica A: Statistical Mechanics and its Applications Volume 338, Issues 1-2 , 1 July 2004, Pages 113-118 doi:10.1016/j.physa.2004.02.032
- Wealth accumulation with random redistribution
- Ding-wei Huang Phys. Rev. E 69, 057103 (2004) doi:10.1103/PhysRevE.69.057103
- Power Law Tails in the Italian Personal Income Distribution
- F. Clementi, M. Gallegati [cond-mat/0408067]
- Wealth distribution in an ancient Egyptian society
- A.Y. Abul-Magd cond-mat/0410414 [Phys. Rev. E 66 (2002) 057104]
- Zipf Distribution of U.S. Firm Sizes
- Robert L. Axtell Science, Vol 293, Issue 5536, 1818-1820 , 7 September 2001
- Bose-Einstein Condensation in Financial Systems
- Kestutis Staliunas [cond-mat/0303271]
- Entropic basis of the Pareto law
- Philip K. Rawlings1, , David Reguera, and Howard Reiss Physica A: Statistical Mechanics and its Applications Volume 343 , 15 November 2004, Pages 643-652 doi:10.1016/j.physa.2004.06.152
- Job match and income distributions
- The statistical distribution of money and the rate of money transference
- Juan C. Ferrero [cond-mat/0306322]
- The statistical distribution of money and the rate of money transference
- Juan C. Ferrero Physica A: Statistical Mechanics and its Applications Volume 341 , 1 October 2004, Pages 575-585 doi:10.1016/j.physa.2004.05.029
- On the size distribution of firms: additional evidence from the G7 countries
- Edoardo Gaffeoa, Mauro Gallegati, , b and Antonio Palestrini Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 117-123 doi:10.1016/S0378-4371(02)01890-3
- Power law distribution of wealth in population based on a modified Equ[i-acute]luz-Zimmermann model
- Nonequilibrium Thermodynamics of Wealth Condensation
- physics/0601191 Dieter Braun
- Flashing annihilation term of a logistic kinetic as a mechanism leading to Pareto distributions
- cond-mat/0602491 Ryszard Zygad\l{}o
- On Stable Pareto Laws in a Hierarchical Model of Economy
- [physics/0607180] How Do Output Growth Rate Distributions Look Like? Some Time-Series Evidence on OECD Countries
- [physics/0607293] k-Generalized Statistics in Personal Income Distribution
- [physics/0608215] Statistical equilibrium in simple exchange games I
- [physics/0608221] Growth and Allocation of Resources in Economics: The Agent-Based Approach
- [0705.3430] The Macro Model of the Inequality Process and The Surging Relative Frequency of Large Wage Incomes
- Inelastically scattering particles and wealth distribution in an open economy
- Frantisek Slanina [cond-mat/0311235]
- Inelastically scattering particles and wealth distribution in an open economy
- Frantisek Slanina Phys. Rev. E 69, 046102 (2004)
- From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature
- William J. Reed Barry D. Hughes Phys. Rev. E 66, 067103 (2002) doi:10.1103/PhysRevE.66.067103
- The Pareto law of incomes - an explanation and an extension
- William J. Reed Physica A: 319, (2003) 469-486
- Power, Levy, exponential and Gaussian-like regimes in autocatalytic financial systems
- Z.F. Huang and S. Solomon The European Physical Journal B 20, April 2001 Pages: 601 - 607 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=20&issue=4&spage=601
- Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements
- Ofer Malcai, Ofer Biham, and Sorin Solomon Physical Review E 1999 -- Volume 60, Issue 2, pp. 1299-1303 http://link.aps.org/abstract/PRE/v60/p1299
- New evidence for the power-law distribution of wealth
- Moshe Levy and Sorin Solomon Physica A: Statistical and Theoretical Physics Volume 242, Issues 1-2 , 1 August 1997, Pages 90-94 doi:10.1016/S0378-4371(97)00217-3
- Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf
- S. Solomon1 and P. Richmond2 Eur. Phys. J. B 27, 257-261 (2002) DOI: 10.1140/epjb/e20020152
- Power Laws are Boltzmann Laws in Disguise
- POWER LAWS ARE DISGUISED BOLTZMANN LAWS, PETER RICHMOND , SORIN SOLOMON International Journal of Modern Physics C, Vol. 12, No. 3 (2001) 333-343 doi:10.1142/S0129183101001754 [cond-mat/0010222]
- Power law distributions and dynamic behaviour of stock markets
- P. Richmond Eur. Phys. J. B 20, 523-526 http://springerlink.metapress.com/openurl.asp?genre=article&eissn=1434-6036&volume=20&issue=4&spage=523
- Power Laws are Logarithmic Boltzmann Laws
- M. Levy, S. Solomon Int. J. Mod. Phys. C 7 (1996) 595-601 [adap-org/9607001]
- Spontaneous Scaling Emergence in Generic Stochastic Systems
- S. Solomon, M. Levy, Int. J. Mod. Phys. C 7 (1996) 745-751 [adap-org/9609002]
- Stochastic Multiplicative Processes for Financial Markets
- Zhi-Feng Huang, Sorin Solomon Physica A 306 (2002) 412-422 [cond-mat/0110273]
- Long-time fluctuations in a dynamical model of stock market indices
- Ofer Biham,1 Zhi-Feng Huang,2 Ofer Malcai,1 and Sorin Solomon Phys. Rev. E 64, 026101 (2001) URL: http://link.aps.org/abstract/PRE/v64/e026101 doi:10.1103/PhysRevE.64.026101
- Theoretical analysis and simulations of the generalized Lotka-Volterra model
- Ofer Malcai,1 Ofer Biham,1 Peter Richmond,2 and Sorin Solomon Phys. Rev. E 66, 031102 (2002) URL: http://link.aps.org/abstract/PRE/v66/e031102 doi:10.1103/PhysRevE.66.031102
- abstract adap-org/9609002
- Stability of Pareto-Zipf Law in Non-Stationary Economies
- cond-mat/0012479 Sorin Solomon , Peter Richmond
- Power Laws of Wealth, Market Order Volumes and Market Returns
- cond-mat/0102423 Sorin Solomon , Peter Richmond
- Finite market size as a source of extreme wealth inequality and market instability
- cond-mat/0103170 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 294, 503-513 (2001)
- Finite market size as a source of extreme wealth inequality and market instability
- cond-mat/0103170 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 294, 503-513 (2001)
- Stochastic Multiplicative Processes for Financial Markets
- cond-mat/0110273 Zhi-Feng Huang , Sorin Solomon Journal-ref: Physica A 306 (2002) 412-422
- Stochastic Lotka-Volterra Systems of Competing Auto-Catalytic Agents Lead Generically to Truncated Pareto Power Wealth Distribution, Truncated Levy Distribution of Market Returns, Clustered Volatility, Booms and Craches
- cond-mat/9803367 Sorin Solomon (Hebrew University)
- Generalized Lotka-Volterra (GLV) Models and Generic Emergence of Scaling Laws in Stock Markets
- cond-mat/9901250 Sorin Solomon
- Theoretical Analysis and Simulations of the Generalized Lotka-Volterra Model
- cond-mat/0208514 Ofer Malcai , Ofer Biham , Peter Richmond , Sorin Solomon
- Long-Time Fluctuations in a Dynamical Model of Stock Market Indices
- cond-mat/0208464 Ofer Biham , Zhi-Feng Huang , Ofer Malcai , Sorin Solomon Journal-ref: phys. rev. E 64, 026101 (2001)
- abstract adap-org/9804001
- Generic emergence of power law distributions and L[e-acute]vy-Stable intermittent fluctuations in discrete logistic systems
- Ofer Biham, Ofer Malcai, Moshe Levy, and Sorin Solomon Physical Review E -- August 1998 -- Volume 58, Issue 2, pp. 1352-1358 URL: http://link.aps.org/abstract/PRE/v58/p1352 doi:10.1103/PhysRevE.58.1352
- ScienceDirect - Economics Letters : The Forbes 400 and the Pareto wealth distribution
- The Pareto-Levy law and the distribution of income
- B. Mandelbrot, International Economic Review: Vol. 1, No. 2, (May, 1960), pp. 79-106. Stable URL: http://links.jstor.org/sici?sici=0020-6598%28196005%291%3A2%3C79%3ATPLATD%3E2.0.CO%3B2-O
- Measurement of inequality of incomes
- Corrado Gini Economic Journal: Vol. 31, No. 121, pp. 124-126 Stable URL: http://links.jstor.org/sici?sici=0013-0133%28192103%2931%3A121%3C124%3AMOIOI%3E2.0.CO%3B2-P
- The Pareto Law and the distribution of income
- G. F. Shirras, Economic Journal: Vol. 45, No. 180, pp. 663-681 Stable URL: http://links.jstor.org/sici?sici=0013-0133%28193512%2945%3A180%3C663%3ATPLATD%3E2.0.CO%3B2-V
- A new Illustration of Pareto Law
- J.C. Stamp, Journal of the Royal Statistical Society: Vol. 77, No. 2,(Jan., 1914), pp. 200-204. Stable URL: http://links.jstor.org/sici?sici=0952-8385%28191401%2977%3A2%3C200%3AANIOPL%3E2.0.CO%3B2-9
- Cours d'Economie Politique, Vilfredo Pareto Review author[s]: Fred D Merritt
- Review of Cours d'Economie Politique The Journal of Political Economy, Vol. 6, No. 4. (Sep., 1898), pp. 549-552. Stable URL: http://links.jstor.org/sici?sici=0022-3808%28189809%296%3A4%3C549%3ACDP%3E2.0.CO%3B2-1
- JC Maxwell: On the dynamical theory of gases
- JC Maxwell On the dynamical theory of gases Philosophical Transactions of the Royal Society of London: Vol. 157 (1867), p. 49-88 Stable URL: http://links.jstor.org/sici?sici=0261-0523%281867%29157%3C49%3AOTDTOG%3E2.0.CO%3B2-H
- The New Theories of Economics
- Vilfredo Pareto The Journal of Political Economy, Vol. 5, No. 4. (Sep., 1897), pp. 485-502. Stable URL: http://links.jstor.org/sici?sici=0022-3808%28189709%295%3A4%3C485%3ATNTOE%3E2.0.CO%3B2-R
- The New Theories of Economics by Vilfredo Pareto
- Journal of Political Economy volume 5, 189?
- Vilfredo Pareto Guide
- Pareto's Law
- D. H. Macgregor The Economic Journal, Vol. 46, No. 181. (Mar., 1936), pp. 80-87. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28193603%2946%3A181%3C80%3APL%3E2.0.CO%3B2-D
- On Pareto's Law
- C. Bresciani-Turroni Journal of the Royal Statistical Society, Vol. 100, No. 3. (1937), pp. 421-432. Stable URL: http://links.jstor.org/sici?sici=0952-8385%281937%29100%3A3%3C421%3AOPL%3E2.0.CO%3B2-L
- A Model of Income Distribution
- D. G. Champernowne The Economic Journal, Vol. 63, No. 250. (Jun., 1953), pp. 318-351. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28195306%2963%3A250%3C318%3AAMOID%3E2.0.CO%3B2-N
- Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails
- Elliott W. Montroll and Michael F. Shlesinger Journal of Statistical Physics Volume 32, Number 2 Date: August 1983 Pages: 209 - 230 DOI: 10.1007/BF01012708
- Scaling behavior in economics: The problem of quantifying company growth
- LuÃs A. Nunes Amaralb, d, a, Sergey V. Buldyreva, Shlomo Havlinc, d, d, a, Philipp Maassa, 1, Michael A. Salingera, H. Eugene Stanleya, , and Michael H. R. Stanley Physica A Volume 244, Issues 1-4 , 1 October 1997, Pages 1-24 doi:10.1016/S0378-4371(97)00301-4
- Universal Features in the Growth Dynamics of Complex Organizations
- Youngki Lee1, LuÃs A. Nunes Amaral1,2, David Canning3, Martin Meyer1, and H. Eugene Stanley1 Phys. Rev. Lett. 81, 3275 (1998) URL: http://link.aps.org/abstract/PRL/v81/p3275 DOI: 10.1103/PhysRevLett.81.3275
- Universal features in the growth dynamics of complex organizations
- Youngki Lee (BU), Luis A. N. Amaral (MIT), David Canning (HIID), Martin Meyer (BU), H. Eugene Stanley (BU)
- Expansion-modification systems: A model for spatial 1/f spectra
- Wentian Li Phys. Rev. A 43, 5240–5260 (1991) URL: http://link.aps.org/abstract/PRA/v43/p5240 DOI: 10.1103/PhysRevA.43.5240
- Power Law Scaling for a System of Interacting Units with Complex Internal Structure
- LuÃs A. Nunes Amaral1,2, Sergey V. Buldyrev2, Shlomo Havlin2,3, Michael A. Salinger4, and H. Eugene Stanley Phys. Rev. Lett. 80, 1385 (1998) URL: http://link.aps.org/abstract/PRL/v80/p1385 DOI: 10.1103/PhysRevLett.80.1385
- Power Law Scaling for a System of Interacting Units with Complex Internal Structure
- L.A.N. Amaral (MIT), S.V. Buldyrev (Boston Univ), S. Havlin (BU), M.A. Salinger (BU), H.E. Stanley (BU) cond-mat/9707342
- Scaling Behavior in Economics: I. Empirical Results for Company Growth
- LuÃs A. Nunes Amaral1, 2, Sergey V. Buldyrev1, Shlomo Havlin1, 3, Heiko Leschhorn1, Philipp Maass1, Michael A. Salinger4, H. Eugene Stanley1 and Michael H.R. Stanley1 J. Phys. I France 7 (1997) 621-633 DOI: 10.1051/jp1:1997180
- Scaling behavior in economics: I. Empirical results for company growth
- L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, M.H.R. Stanley cond-mat/9702082
- Scaling Behavior in Economics: II. Modeling of Company Growth
- Sergey V. Buldyrev1, LuÃs A. Nunes Amaral1, 2, Shlomo Havlin1, 3, Heiko Leschhorn1, Philipp Maass1, Michael A. Salinger4, H. Eugene Stanley1 and Michael H.R. Stanley J. Phys. I France 7 (1997) 635-650 DOI: 10.1051/jp1:1997181
- Scaling behavior in economics: II. Modeling of company growth
- S.V. Buldyrev, L.A.N. Amaral, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, M.H.R. Stanley cond-mat/9702085
- On the Size Distribution of Business Firms
- Robert E. Lucas, Jr. The Bell Journal of Economics, Vol. 9, No. 2. (Autumn, 1978), pp. 508-523. Stable URL: http://links.jstor.org/sici?sici=0361-915X%28197823%299%3A2%3C508%3AOTSDOB%3E2.0.CO%3B2-S
- The Size and Growth of Firms
- Ajit Singh; Geoffrey Whittington Review of Economic Studies: Vol. 42, No. 1. (Jan., 1975), pp. 15-26. Stable URL: http://links.jstor.org/sici?sici=0034-6527%28197501%2942%3A1%3C15%3ATSAGOF%3E2.0.CO%3B2-3
- Growth and Size of Firms
- Peter E. Hart; Nicholas Oulton The Economic Journal, Vol. 106, No. 438. (Sep., 1996), pp. 1242-1252. Stable URL: http://links.jstor.org/sici?sici=0013-0133%28199609%29106%3A438%3C1242%3AGASOF%3E2.0.CO%3B2-V
- Robert Pierre Louis GIBRAT (1904-1980)
- THE GROWTH DYNAMICS OF GERMAN BUSINESS FIRMS
- JOHANNES VOIT Advances in Complex Systems, Vol. 4, No. 1 (2001) 149-162 doi:10.1142/S0219525901000127
- Statistical models for company growth
- Matthieu Wyart, Jean-Philippe Bouchaud cond-mat/0210479
- Statistical models for company growth
- Matthieu Wyarta and Jean-Philippe Bouchaud Physica A: Statistical Mechanics and its Applications Volume 326, Issues 1-2 , 1 August 2003, Pages 241-255 doi:10.1016/S0378-4371(03)00267-X
- Gibrat's Law and the Firm Size / Firm Growth Relationship in Italian Services
- R. Piergiovanni (Statistics Italy, Rome) E. Santarelli (University of Bologna) L. Klomp (Ministry of Economic Affairs, The Hague) A.R. Thurik (thurik@few.eur.nl) (CASBEC, Erasmus University Rotterdam, and EIM Business and Policy Research, Zoetermeer)
- Matteo Richiardi: Generalizing Gibrat
- Matteo Richiardi Journal of Artificial Societies and Social Simulation vol. 7, no. 1
- On size and growth of business firms
- G. De Fabritiia, F. Pammolli, and M. Riccaboni Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 38-44 doi:10.1016/S0378-4371(03)00043-8
- The variance of corporate growth rates
- John Sutton Physica A: Statistical Mechanics and its Applications Volume 324, Issues 1-2 , 1 June 2003, Pages 45-48 doi:10.1016/S0378-4371(03)00004-9
- A stochastic model of firm growth
- [physics/0609020] A Generalized Preferential Attachment Model for Business Firms Growth Rates: II. Mathematical Treatment
- [physics/0609011] A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence
- [physics/0608197] On Capital Dependent Dynamics of Knowledge
- [physics/0703023] A transactional theory of fluctuations in company size
- A family-network model for wealth distribution in societies
- R. Coelho, Z. Neda, J.J. Ramasco, M.A. Santos [cond-mat/0412516]
- Mean-field limit of systems with multiplicative noise
- Dynamic Process of Money Transfer Models
- physics/0507162
Yougui Wang , Ning Ding - Prospects for Money Transfer Models
- physics/0507161
Yougui Wang , Ning Ding , Ning Xi - How Required Reserve Ratio Affects Distribution and Velocity of Money
- physics/0507160
Ning Xi , Ning Ding , Yougui Wang - The Velocity of Money in a Life-Cycle Model
- physics/0507159
Yougui Wang , Hanqing Qiu
Journal-ref: Physica A 353(C), 493(2005) - The Velocity of Money in a Life-Cycle Model
- Domenico Delli Gatti, Corrado Di Guilmi, Edoardo Gaffeo and Mauro Gallegati, Physica A: Statistical Mechanics and its Applications Volume 344, Issues 1-2 , 1 December 2004, Pages 8-13 doi:10.1016/j.physa.2004.06.079
- [physics/0702248] The uniqueness of company size distribution function from tent-shaped growth rate distribution
Saturday, December 25, 2010
Bunga Rampai Laman Distribusi Kekayaan (Ekonofisika)
Labels:
Ekonofisika
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment